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ALL TRIANGULATIONS 
OF THE PROJECTIVE PLANE 

ARE GEOMETRICALLY REALIZABLE IN E 4 

BY 

DAVID BARNETTE 

ABSTRACT 

We say that a triangulation T of a manifold is geometrically realizable in E" 
provided there is a triangulation T 'C  E" isomorphic to T such that each 
simplex of T' is convex. A triangulation of the projective plane cannot be 
geometrically realizable in E 3 because it is not topologically realizable in E 3. 
We show that it is, however, geometrically realizable in E 4. 

I. Introduction 

A convex 3-dimensional polytope (hereafter to be called a 3-polytope) is a 

3-dimensional set that is the convex hull of a finite set of points. The graph of a 

3-polytope P is defined to be the graph consisting of the vertices and edges of P. 

Graphs of other structures that we shall be dealing with, such as triangulations, 

are defined in the same way. 

A theorem of Steinitz [3, 2, ch. 13] characterizes the graphs of 3-polytopes as 

those that are planar and 3-connected. It follows from Steinitz's theorem that 

given any triangulation of the 2-sphere there exists a 3-polytope isomorphic to it. 

Another way of looking at this is that any triangulation of the 2-sphere can be 

realized with convex triangles in E 3. For triangulations of other orientable 

2-manifolds it is not known whether all of them can be realized with convex 

triangles in E 3. None of the nonorientable triangulations can be realized in E 3, 

while every simplicial 2-dimensional complex can be realized in E 5 as a 

subcomplex of the boundary of a suitably closed 5-dimensional convex polytope 

(see [2, ch. 7]). In this paper we'prove that the triangulations of the projective 

plane can be realized with convex triangles in E 4. 
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2. Graphs and complexes 

By a path in a graph we mean a simple arc consisting of edges of the graph. 

The vertices at the two ends of the arc are called its endpoints. Any vertex other 

than an endpoint is called an interior vertex. The length of a path is the number of 

edges in it. A circuit is a simple closed curve consisting of edges of the graph. 

The length of a circuit is the number of edges in it. A circuit of length n will be 

called an n-circuit. If an edge has vertices x and y, we denote it xy. If a circuit has 

edges ab, bc, cd . . . .  we denote it by abcd . . . .  
A cell complex is a collection ~ of convex polygons such that the intersection 

of any two polygons is empty, a vertex of both or an edge of both. If all polygons 

are triangles we call it a simplicial cell complex. This definition differs slightly 

from the usual definition of cell complex, but since we are dealing only with 

2-dimensional complexes our definition is a little less cumbersome. When a 

collection of polygons intersects in this way we say that they meet properly. The 

polygons, their edges and their vertices will be called the faces of the complex. 

For 0 -< n <- 2, we use the term n-face to mean n-dimensional face. The term 

facet will be used for 2-faces of 3-polytopes. Two cell complexes are isomorphic 
provided there is a one-to-one, incidence preserving, dimension preserving 

function taking the set of faces of one complex onto the set of faces of the other. 

A topological cell complex is a collection of polygons with various collections 

of edges and vertices identified such that: 

(i) An edge of a polygon is identified with at most one edge of any other 

polygon, and an edge of a polygon P is not identified with any other edge of P. 

(ii) A vertex of a polygon is identified with at most one vertex of any other 

polygon, and a vertex of a polygon P is not identified with any other vertex of P. 

(iii) If an edge e is identified with an edge e', then the vertices of e are 

identified with the vertices of e'. 

(iv) If two vertices of a polygon P are identified with two vertices of polygon 

P '  then the two vertices are joined by an edge of each polygon and these edges 

are identified. 

A topological cell complex c~ is isomorphic to a cell complex c~, provided 

there is a one-to-one correspondence between the polygons, such that two 

polygons in cr intersect on an edge or vertex if and only if the two corresponding 

polygons in cr have identified edges or vertices respectively. In this case we say 

that c~, is a geometric realization of cc 

A set S obtained from a topological cell complex by the identification 

topology, and any set homeomorphic  to S will also be called a topological cell 
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complex. The faces are the images of the vertices, edges and polygons under the 

homeomorphism. 

Hereafter we shall use the term 2-complex (sometimes just "complex") for 

2-dimensional topological cell complex. 

An edge of a 2-complex is a boundary edge provided it belongs to exactly one 

polygon in the complex. The boundary of a 2-complex is the union of its 

boundary edges. An edge of a 2-complex that is not a boundary edge but joins 

two vertices of the boundary is called a diagonal of the complex. If a 2-complex 

c~ is a subcomplex of a 2-complex cs then any edge in qr that is not an edge of cr 

but joins two boundary vertices of %) is called an outer diagonal of %). Note that 

an outer diagonal of a complex is not a diagonal of the complex. 

A triangulated disc is a type of 2-complex that we shall be dealing with. One 

can add the disc to the complex (with the obvious identifications) to get a new 

complex that is a topological sphere. This can be done provided the triangulated 

disc has no diagonals. If there were such a diagonal then condition (iv) would not 

be met and we would not have a complex. The following theorem of Steinitz (see 

[3]) tells us more about such a spherical complex: 

THEOREM (Steinitz). Any 2-complex homeomorphic to a sphere is isomorphic 
to the cell complex consisting of the boundary of a 3-polytope. 

There are other complexes that are topological discs besides those that are 

triangulations. Any such disc such that adding the disc to the complex with the 

obvious identifications creates a spherical complex, will be called a Schlegel 
complex. Any 3-polytope P whose boundary complex is isomorphic to this 
sphere will be said to be isomorphic to the Schlegel complex. Thus any 

triangulated disc without diagonals is a Schlegel complex. The disc that is added 

to the complex will be called the outer face of the complex. In a 3-polytope 

isomorphic to a Schlegel complex %), the facet of the polytope corresponding to 

the outer face of ~ will be called the outer facet of P. By a theorem of Barnette 

and Griinbaum [1] there is a polytope isomorphic to P with the outer facet 

congruent to any preassigned polygon with the same number of edges. 

The boundary of P minus its outer facet will be called a polyhedral realization 
of cr 

For a vertex v of a 2-complex %) we define the star of v in ~ to be the union of 

the faces of (r that meet v. The antistar of v in cr is the union of the faces of %) 

not meeting v. The link of v in cr is the intersection of the star and the antistar. 

Let v be a vertex of a simplicial 2-complex (r such that the star of v is 

homomorphic to a disc. We consider two sets of vertices A and B in the link of v 
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such that A fq B consists of 2 vertices, if star v is a disc, and at most two vertices 

otherwise, and such that the vertices in both A and B are consecutive in their 

cyclic ordering around v. We replace the star of v by two points v' and v", 

together with triangles that are the convex hulls of v' and edges joining vertices 

of A, or the convex hulls of v" and the edges joining vertices of B, or the convex 

hulls of the segment v'v" with vertices in A f3 B. This process, called vertex 
splitting, replaces a cell in ~ by a cell and thus does not alter the topological type 

of the complex. The reader may check that this process does always produce a 

complex. It is not true that this process will always produce a cell complex. 

However, if the new vertices v' and v" are sufficiently close to v, and if c~ is the 

boundary of a 3-polytope, then this vertex splitting process produces another cell 

complex that is the boundary of a 3-polytope. 

When a splitting is done on a cell complex to produce another cell complex we 

call it a geometric vertex splitting. 

The following well known lemma does not appear to be in the literature. 

LEMMA 2. Any vertex splitting on the boundary of a simplicial 3-polytope P 
can be done geometrically. 

PROOF. Let v be the vertex to be split and let the sets A and B be as in the 

definition of vertex splitting. Let H be a plane that separates v from the other 

vertices of P. The intersection of H with P is a convex polygon O whose edges 

project onto the edges of the link of v. Let the common vertices of A and B be x 

and y. Let H '  be the plane determined by v, x and y. Since H A P is a convex 

polygon, H '  will intersect its boundary at just the points corresponding to x and 

y. Thus the boundary of H fq P is divided into two paths one on each side of H' .  

The vertices of these paths project onto A and B, thus each of the sets A and B 

lie on just one side of H' .  To accomplish the splitting, we choose v' to be the 

vertex v. The new facets meeting v' will lie on just one side of H' .  We choose v" 

to be a point close to v but on the other side of H' .  Thus the new facets meeting 

v', and the new facets meeting the edge v'v" will lie on the opposite side of the 

plane H ' ,  and we have the new facets meeting properly. 

It is important to notice two things about the construction in our proof. First, 

by choosing v' close enough to v we may construct our new polytope within any 

prescribed e of the original (in the Hausdorff metric). Second, the facets of the 

new polytope that do not meet v" are facets of the original polytope. This will be 

very important in later constructions. 

The inverse operation to vertex splitting will be called edge shrinking. It is not 

true that any edge can be shrunk. In a simplicial 2-complex all of the conditions 
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of a complex are clearly met by the collection of triangles produced by the 

shrinking except possibly condition (iv). Condition (iv) would fail to be met if in 

the original complex an edge e meets v', an edge e' meets v", and e and e' meet 

at some other vertex, and are not the edges of a face containing the edge v'v". 
This is clearly the only condition that would prevent the formation of a complex 

by edge shrinking, thus we have: 

LEMMA 3. An edge v ' v" of a simplicial 2-complex qr is shrinkable provided the 

edge v'v" does not belong to a 3-circuit that does not bound a face of q~. 

Another way of looking at this is that shrinking an edge of a triangulation 

produces a cell complex provided a double edge is not created. If shrinking an 

edge produces another complex we say that the edge is shrinkable. A 3-circuit 

that does not bound a face will be called a nonfacial triangle. 

3. Polygon realizations of M6bius strips 

In a triangulated M6bius strip there will be two essentially different kinds of 

diagonals. A diagonal may have the property that if the strip is cut along this 

diagonal the result is that the strip has been changed into a cell. Such an edge we 

shall call a cut edge and we shall reserve the term diagonal for those that have 

the property that cutting along them produces two pieces, a cell and a M6bius 

strip. If we have a triangulation in which every edge not on the boundary is a cut 

edge we shall call it a simple triangulation. A simple triangulation in which every 

vertex has valence four will be called an elementary triangulation. The reader 

may easily verify the following: 

LEMMA 4. Any elementary triangulation of the M6bius strip has an odd 
number of vertices. 

We shall be dealing with a special kind of geometric realization of triangulated 

MObius strips: 

A geometric realization R of a triangulated MObius strip M is a polygon 
realization provided the orthogonal projection of R onto some plane is a 

polygon P such that the boundary of R is taken one-to-one onto the boundary 

of P. 

In triangulations of the projective plane the presence of one particular type of 

4-circuit will require special arguments. A 4-circuit in a triangulated projective 

plane bounding a cell C, where C is not the union of two triangles, is called a 

special 4-circuit, provided it has two outer diagonals in the triangulation. 
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THEOREM I. The elementary triangulation Te,+~ of the M6bius strip with 

2n + 1 vertices has a polygon realization in EL 

PROOF. Let P be a (2n + 1)-gon in the xy-plane in EL Let the vertices of P 

be labeled a,, a~, as," �9 ", a2~ a 2 ,  a 4 , "  �9 ", a2. in a cyclic ordering. For each i, 

1 < i < 2n, we choose b, to be the point in E ~ with the first two coordinates the 

same as a,, the third coordinate equal to i and the fourth coordinate 0. Any two 

consecutive triangles in this set lie on different planes so they meet properly. For 

any two nonconsecutive triangles the one with a vertex whose third coordinate is 

largest has all of its relative interior points above all relative interior points of the 

other, thus they also meet properly. It follows that the triangles b~b~+~b~+2, for 
1 < i < 2 n - 2 ,  form a triangulated strip that is isomorphic to the complex 

consisting of the first 2n - 2  triangles of T2,+~. 

We complete the polygon realization of T2~ by choosing b2,+, to have its first 

two coordinates the same as a2,<, its third coordinate arbitrary, and its fourth 

coordinate different from 0. We add the triangles b2,-~b~,b2,<, b2,b2.<b~ and 

b2,+~b~b2. None of these triangles will meet any previous ones improperly 

because their relative interiors are not in the 3-space spanned by the previous 

triangles. The edges of the polygon correspond to the edges of the boundary of 

this M6bius strip by the obvious correspondence of subscripts, so the boundary 

of the M6bius strip will project onto the edges of the polygon. Since no two 

edges of the strip correspond to the same edge of the polygon the projection of 
the boundary of the strip is one-to-one. 

THEOREM 2. Any simple triangulation T of a M6bius strip has a polygon 

realization. 

PROOF. If the triangulation is elementary we are done by the previous 

theorem. Suppose that the triangulation is not elementary. Our proof is 

inductive. The induction is started by the elementary triangulations and by the 

special nonelementary triangulation in Fig. 1. The induction is on the number of 
vertices of T. 

1) W 

1) 

X 

Fig. 1. 

y z 
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(We shall represent triangulations of the M6bius strip as they appear when cut 

along a cut edge, thus our figures are triangulated quadrilaterals with opposite 

edges identified.) 

Let v be a vertex of T of valence greater than 4. 

Case I. The valence of v is at least 6. In this case let the first four edges 

meeting v, counting in a cyclic ordering starting at an edge on the boundary of 

the strip, be va, vb, vc and vd (Fig. 2). The edges vb, vc and vd are cut edges. 

We shall shrink the edge cd to produce a smaller triangulation. To see that we 

get a triangulation after the shrinking, note that there are cut edges on each side 

of this edge emanating from v. This prevents the edge ad from belonging to a 

nonfacial triangle. 

V 

b c d 
Fig. 2. 

To get a realization of our original triangulation, suppose that the new 

triangulation T' resulting from the edge shrinking is realizable by a cell complex 

R projecting onto a polygon P. We can easily get a realization of T by choosing 

a triangle F bounded by two cut edges meeting the vertex of R corresponding to 

v, and an edge e of the boundary. We then choose a point p very near the 

midpoint of e. We choose it near enough that introducing p as a new vertex and 

replacing F by two triangles (with a common edge pv)  will produce a cell 

complex R' .  

Let e' be the edge of P that e projects onto. We may also choose p so that it 

projects onto a point p' near the midpoint of e' but not in P. By choosing the 

point close enough to e the projection of p will be a vertex of con{p', P}, thus we 

have a polygon realization of T. 

Case 11. v has valence 5, and the triangulation is not the triangulation in 

Fig. 1. 

Let the cut edges meeting v be a, b and c, with endpoints x, y and z as in Fig. 

3. We wish to shrink edge xy and proceed as in the previous case. It may happen, 

however, that an edge of T joins x and z, preventing us from shrinking edge xy. 

Such an edge cannot be an edge of the boundary of the strip because as we 



82 D. BARNETTE Isr. J. Math. 

Z /9 

v x y 

Fig. 3. 

traverse the boundary from x to z we pass the vertex v. Thus the edge xz is a cut 

edge. The vertices x, z and v cannot determine a triangle of the triangulation 

because xv would then be a double edge (see Fig. 3). 

Since there can be no interior vertices in the strip, there must be an edge zw 

with w between x and v as in Fig. 1. There can be only one vertex on this path 

from x to v, for if there were another such vertex it would be joined to z, and we 

would have Case I. By a similar argument, there is one vertex r, between z and v 

as shown, with r joined to x. We now have a complete description of the 

triangulation, and it is the triangulation in Fig. 1. 

Case III. T is the triangulation in Fig. 1. In this case we construct a polygon 

realization. 

Let  P be a polygon in the xy-plane onto which we are to project the M6bius 

strip. We label the vertices of P al," �9 ", a6 in cyclic order. We choose b~ to have 

the same first two coordinates as a6, third coordinate different from 0, and fourth 

coordinate equal to 0. Let  E be the 3-space spanned by the xy-plane and b6. In E 

we take the triangles a2a3a5 and a3asb6 (these are to correspond to the triangles 

rvx and vxy).  We choose bl to have the same first two coordinates as a,, second 

coordinate arbitrary and third coordinate different from 0. We now add the 

triangles bla2as, bla4as, bla3a4 and b~a3b6 (these correspond to the triangles 

meeting z). The result is a triangulated M6bius strip isomorphic to T with the 

isomorphism taking z to b~, r to a2, v to a3, w to a4, x to a5 and y to b6. 

4. Realizations of the projective plane 

Parts of the realizations that we construct will come from the boundary 

complexes of 3-polytopes. The following lemmas although not new have 

probably not appeared in these particular forms. 

LEMMA 5. If G is the graph of a simplicial 3-polytope that is not the graph of a 

tetrahedron, then every vertex meets a shrinkable edge. 
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PROOF. If we have a 3-valent vertex then it is obvious that every edge 

meeting it is shrinkable. Suppose that v is a vertex of valence more than three. 

An edge meeting v will fail to be shrinkable only if it belongs to a nonfacial 

triangle. One edge of such a triangle would be an outer diagonal of the star of v. 

Among all such outer diagonals we choose an edge e such that a path P along 

the link of v joining the endpoints of e has minimal length. The path P must 

have an interior vertex or else the graph would have a double edge. Let x be an 

interior vertex of this path. The edge xv cannot belong to a nonfacial triangle 

because one edge of such a triangle would have to cross e. Thus xv is a 

shrinkable edge. 

LEMMA 6. Let F and G be two facets of a simplicial 3-polytope P, meeting on 

an edge. Given any e < 0 and any 3-simplex S with facets F' and G'  there is a 

3-polytope P' isomorphic to P, within e of S (in the Hausdorff metric), containing 

F' and G'  as the facets corresponding to F and G under the isomorphism. 

PROOF. We begin by shrinking edges in the graph of P. If there are no 

vertices of P missing F and G, then P is a simplex and the conclusion is obvious. 

If there is a vertex of P missing these two facets then there is a shrinkable edge 

meeting such a vertex. We choose such an edge and shrink it. Repeatedly doing 

these shrinkings reduces the graph of P to the graph of the tetrahedron. We now 

take the tetrahedron S and do the corresponding geometric vertex splittings to 

produce a polytope isomorphic to P. 

Since all of these splittings can be done so that the new vertices are not 

vertices of the facets corresponding to F or G, we can do all of the splittings so 

that F '  and G'  are not changed. 

THEOREM 3. Any  triangulation T of the projective plane can be geometrically 

realized in E 4. 

PROOF. We first make two reductions in the problem. 

Reduction I. It is sufficient to consider triangulations in which every circuit 

of length three which bounds a cell bounds a triangle of the triangulation. 

Consider any triangulation with circuits of length three bounding cells that are 

not triangles of the triangulation. Replacing the cells bounded by these circuits 

by triangles produces another triangulation M'. Let A be a triangle in a 

geometric realization of T, corresponding to such a 3-circuit. Any such cell in the 

original triangulation bounded by such a circuit C is a Schlegel complex 

isomorphic to a simplicial 3-polytope P (by Steinitz's Theorem). By Lemma 6 

there exists a 3-polytope P'  isomorphic to P with C bounding one facet F and 
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with P'  within any preassigned e of the triangle spanned by C. We choose e 

small enough so that replacing the triangle A by the boundary of P'  minus A 

guarantees that faces meet properly, thus creating a cell complex. Doing this for 

each such circuit of length three yields the desired realization. 

Reduction II. It is sufficient to consider triangulations in which the only 

nonspecial 4-circuits bounding cells are those bounding cells consisting of two 

triangles meeting on an edge. 

Suppose that a nonspecial 4-circuit C =abcd  bounds a cell A '  that is not one 

consisting of two triangles meeting on an edge and lacks an outer diagonal, say, 

ac. To the complex A '  we add the triangles adb and cdb. We now have a 

2-sphere isomorphic to a 3-polytope, by Steinitz's Theorem. 

In the original triangulation we shall remove A '  and replace it with the 

triangles acb and acd. This produces a complex because ac was not an edge 

before this replacement. We shall call this triangulation T'. 

Suppose we have a geometric realization R of T'. For any vertex x of T' we 

shall let x'  be the corresponding vertex of R. 

The convex hull of a ' ,  b', c' and d'  is a simplex S. By Lemma 6 we can 

construct a 3-polytope P isomorphic to S within e of S, with a 'd 'b '  and b'd 'c '  as 

facets corresponding to adb and bdc in X. We remove the facets a 'b 'd '  and 

c 'b 'd '  from the boundary of P. If we have chosen e small enough then the facets 

remaining in the boundary of P will meet the other triangles of T' properly 

because they will lie within e of faces acb and acd of T', and we have the 

desired realization. 

We shall call 3-circuits that bound cells that are not triangles, and nonspecial 

4-circuits that bound cells that are not two triangles meeting on an edge, 

forbidden circuits. We now shall consider triangulations without forbidden 

circuits. 

For these triangulations we show that they can be decomposed into two 

complexes - -  one that is a Schlegel complex that contains all of the vertices of 

the triangulation, and the other complex a M6bius strip with a polygon 

realization. Then we shall show how to glue geometric realizations of them 

together to get a realization of T. 

To show that the above decomposition of T exists it suffices to show that there 

exists a M6bius strip in T with a simple triangulation with a polygon realization 

and that does not admit any outer diagonals. If such a M6bius strip exists, then 

the complementary complex will be a triangulated cell without diagonals and will 

thus be a Schlegel complex. 
The first case that we treat is triangulations that have a special 4-circuit 
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bounding a cell C. Let the vertices of the 4-circuit in cyclic order around C be a, 

b, c and d. The cell C together with the cell bounded by the quadrilateral adbc 
forms a M6bius strip in the projective plane. The M6bius strip has no outer 

diagonals because each two of the four vertices on the boundary of the strip are 

joined by edges of the strip. 

The link of a in this strip consists of two paths - -  a path A from c to d inside 

adbc, and a path B from d to b inside abcd (see Fig. 4). We take the cell C. 

bounded by A, db and bc and construct a sphere S from it by adding a face F, 

bounded by A and a new edge cd, and also adding a triangular face cdb. The 

sphere now consists of a nontriangular face F and a complementary triangulated 

cell. This triangulated cell has no diagonals because such a diagonal would be an 

edge connecting two nonconsecutive vertices of A. There cannot be such an edge 

because in the original triangulation, this edge together with two edges meeting 

a would form a forbidden circuit. 

s a 

d 

Fig. 4. 

It follows that the sphere S is 3-polyhedral. We do a similar construction with 

the cell C2 bounded by B, bc and cd, obtaining a 3-polyhedral sphere S'. We now 

choose two 3-polytopes P and P', isomorphic to S and S' respectively, and using 

a projective transformation if necessary, situate them so that their boundaries 

intersect on the triangular face cbd, and such that a projection in some direction 

will project the triangle cbd onto the boundary of the projected image (we may 

in fact choose the images of the projection to be three vertices of some specified 

quadrilateral O). Next we choose a point a '  in E ~, but not in the 3-space 

spanned by P and P', which projects onto the fourth vertex of Q. 

Our polygon realization of the M6bius strip is the union of the cells on the 

boundaries of the 3-polytopes of P and P' corresponding to C, and C2 together 

with the convex hulls of a '  and the edges of the paths corresponding to A and B. 

We have established that this M6bius strip has a polygon realization and thus in 

the case where special 4-circuits exist we have the desired decomposition. 
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We now assume that T has no special 4-circuits. We begin by taking the 

antistar of a vertex in T. This set is a M6bius strip without outer diagonals. We 

shall show how to repeatedly discard parts of this strip until we are left with one 

that has a simple triangulation and no outer diagonals. 

If at any step of our construction we have a strip with a diagonal, then that 

diagonal together with part of the boundary of the strip will bound a cell. This 

cell we can discard and preserve the property of having no outer diagonals. We 

shall call this discarding a diagonal. 

If at some stage we have discarded all diagonals and we have a vertex on the 

boundary of the strip such that no cut edges meet that vertex, then we may 

remove the triangles of the star of the vertex in the strip and obtain a smaller 

M6bius strip without outer diagonals. We call this discarding a star. 

Suppose, now, that we have a strip for which we cannot discard a diagonal or 

star. Suppose also that there is an interior vertex (i.e. one not on the boundary of 

the strip). Since the graph of a triangulated M6bius strip is connected, there 

exists a vertex v on the boundary joined to an interior vertex x. Since no star is 

removable, there is a cut edge vy meeting v. We treat two cases. 

Case L There is another cut edge vw such that vx is between vy and vw in 

the strip (see Fig. 5). Let P be the path along the boundary of the strip from y to 

w that misses v. Assume that we have chosen the vertices y and w such that the 

length of P is minimal. The path P cannot be an edge because then vwy would 

be a forbidden 3-circuit. If, however, there is an interior vertex p of P then by 

the minimality condition on y and w, there would be no cut edge from p to v. 

This means that there is no cut edge from p to any vertex, because edges from p 

to other vertices would be diagonals. It follows that the star of p is removable. 

y w 

1) 

Fig. 5. 

Case II. There is no cut edge as described in Case I. Let vs be an edge on 

the boundary of the strip such that vx is between vs and vy in the strip (see Fig. 

6). Since stars are not removable, there is a cut edge st meeting s. Let  P '  be the 

path along the boundary of the strip from y to t missing v. Assume that y and t 
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y t  /xf 
v s 

Fig. 6. 

are chosen such that P '  has minimal length. The path P '  cannot be an edge 

because then vyts would be a forbidden 4-circuit. On the other hand, if there is 

an interior vertex p" on P then by the minimality condition on y and t, p" would 

have no cut edges meeting it and thus its star would be removable. 

Thus, repeated applications of diagonal and star removal results in a triangu- 

lated M6bius strip with no diagonals, no interior vertices and no outer diagonals, 

that is, a M6bius strip with a simple triangulation and no outer diagonals. 

Let T be any triangulation of the projective plane without forbidden circuits 

and let it be decomposed into a M6bius strip S and Schlegel complex C. Let P be 

a 3-polytope isomorphic to C with outer face F. By Theorem 2 there is a polygon 

realization of S in E 4 that projects onto an n-gon O. We can choose a 3-polytope 

P '  isomorphic to P with the outer face F congruent to O. By a linear 

transformation we can obtain a realization R of S that is within a given e of F. 

Each triangle in R projects onto a triangle (or segment) in F. Since F meets 

other facets of P '  properly, these images meet the other facets of P '  properly. 

Thus if the vertices of these images are moved a small enough distance the 

resulting triangles will still meet the other facets of F properly (note that some of 

the vertices moved may be vertices of F). In other words, by choosing R close 

enough to F we may move the vertices of F to their corresponding vertices in R 

and have faces meet properly. Moving these vertices of F produces a gluing of R 

to P '  and we have our realization of T. 
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